66

Industrial Process Control MD 454

If you have a smart project, you can say "I'm an engineer"

Lecture 4

Staff boarder

Dr. Mostafa Elsayed Abdelmonem

Industrial Process Control MDP 454

- Lecture aims:
- Understand the Block reduction techniques
- Identify the transfer function

Mathematical Modeling

- Transfer Function

Component Block Diagram

Component Block Diagram

$R(s)$ Reference input
$C(s)$ Output signal (controlled variable)
$B(s) \quad$ Feedback signal $=H(s) C(s)$
$E(s) \quad$ Actuating signal (error) $=[R(s)-B(s)]$
$G(s)$ Forward path transfer function or open-loop transfer function $=C(s) / E(s)$
$M(s)$ Closed-loop transfer function $=C(s) / R(s)=G(s) /[1+G(s) H(s)]$
$H(s)$ Feedback path transfer function
$G(s) H(s) \quad$ Loop gain
$\frac{E(s)}{R(s)}=$ Error-response transfer function $\frac{1}{1+G(s) H(s)}$

TABLE 3.4.1 Some of the Block Diagram Reduction Manipulations

Original Block Diagram	Manipulation	Modified Block Diagram
$\xrightarrow{R} G_{1} \xrightarrow{C}$	Cascaded elements	$\xrightarrow{R} G_{1} G_{2} \xrightarrow{C}$
	Addition or subtraction (eliminating auxiliary forward path)	$\xrightarrow{R} G_{1} \pm G_{2} \xrightarrow{C}$
$\xrightarrow[\longleftrightarrow]{R} \quad G \quad \xrightarrow{C}$	Shifting of pickoff point ahead of block	
	Shifting of pickoff point behind block	
	Shifting summing point ahead of block	
	Shifting summing point behind block	
	Removing H from feedback path	
	Eliminating feedback path	$\xrightarrow{R} \xrightarrow{\frac{G}{1+G H} \xrightarrow{C}}$

Component Block Diagram

- It represents the mathematical relationships between the elements of the system.

- The transfer function of each component is placed in box, and the input-output relationships between components are indicated by lines and arrows.

Component Block Diagram

- We can solve the equations by graphical simplification, which is often easier and more informative than algebraic manipulation, even though the methods are in every way equivalent.
- The interconnections of blocks include summing points, where any number of signals may be added together.

Block Diagram Reduction Technique

- Blocks in series:

$$
\frac{Y_{2}(s)}{U_{1}(s)}=G_{1} G_{2}
$$

- Blocks in parallel with their outputs added:

Combining blocks in cascade

Block Diagram Reduction Technique

- Transfer function

$$
\frac{Y(s)}{R(s)}=\frac{G_{1}}{1+G_{1} G_{2}}
$$

Two blocks are connected in a feedback arrangement so that each feeds into the other.

Block Diagram Reduction Technique

- Proof:

$$
\begin{aligned}
& \xrightarrow{\mathrm{e}} \rightarrow \frac{G_{1}}{1+G_{1} G_{2}} \longrightarrow y=\frac{G_{1}}{1+G_{1} G_{2}} x \\
& e=x-b, b=G_{2} y, y=G_{1} e \Rightarrow y=\frac{G_{1}}{1+G_{1} G_{2}} x \\
& e=x-G_{2} G_{1} e \\
& \left(1+G_{1} G_{2}\right) e=x \Rightarrow e=\frac{1}{1+G_{1} G_{2}} x
\end{aligned}
$$

Block Diagram Reduction Technique

Block Diagram Reduction Technique

Block Diagram Reduction Technique

Block Diagram Reduction Technique

Example

Block Diagram Reduction Technique

Example 2: Find TF from U to Y:

- No pure series/parallel/feedback
- Needs to move a block, but which one?

Key: move one block to create pure series or parallel or feedback!
So move $\frac{10}{s(s+20)}$ either left or right.

Block Diagram Reduction Technique

Example

Can use superposition:
First set $\mathrm{D}=0$, find Y due to R
Then set $\mathrm{R}=0$, find Y due to D

Finally, add the two component to get the overall Y

Block Diagram Reduction Technique

First set $\mathrm{D}=0$, find Y due to R

$$
Y_{1}(s)=\frac{G_{1} G_{2}}{1+G_{1} G_{2} H_{1}} R(s)
$$

Block Diagram Reduction Technique

Then set $\mathrm{R}=0$, find Y due to D

$$
Y_{2}(s)=\frac{G_{2}}{1+G_{1} G_{2} H_{1}}(-D(s))
$$

(a)

Block Diagram Reduction Technique

Finally, add the two component to get the overall Y

Modeling of Motors

Mathematical Modeling

The equations of the Ward-Leonard layout are as follows . The Kirchhoff's law of voltages of the excitation field of the generator G is

$$
v_{\mathrm{f}}=R_{\mathrm{f}} i_{\mathrm{f}}+L_{\mathrm{f}} \frac{\mathrm{~d} i_{\mathrm{f}}}{\mathrm{~d} t}
$$

The voltage v_{g} of the generator G is proportional to the current i_{f}, i.e.,

$$
v_{\mathrm{g}}=K_{\mathrm{g}} i_{\mathrm{f}}
$$

The voltage v_{m} of the motor M is proportional to the angular velocity ω_{m}, i.e.,

$$
v_{\mathrm{m}}=K_{\mathrm{b}} \omega_{\mathrm{m}}
$$

The differential equation for the current i_{a} is

$R_{\mathrm{a}} i_{\mathrm{a}}+L_{\mathrm{a}} \frac{\mathrm{d} i_{\mathrm{a}}}{\mathrm{d} t}=v_{\mathrm{g}}-v_{\mathrm{m}}=K_{\mathrm{g}} i_{\mathrm{f}}-K_{\mathrm{b}} \omega_{\mathrm{m}}$
The torque T_{m} of the motor is proportional to the current i_{a}

$$
T_{\mathrm{m}}=K_{\mathrm{m}} i_{\mathrm{a}}
$$

Mathematical Modeling

The equations of the Ward-Leonard layout are as follows . The Kirchhoff's law of voltages of the excitation field of the generator G is
The rotational motion of the rotor is described by

$$
J_{\mathrm{m}}^{*} \frac{\mathrm{~d} \omega_{\mathrm{m}}}{\mathrm{~d} t}+B_{\mathrm{m}}^{*} \omega_{\mathrm{m}}=K_{\mathrm{m}} i_{\mathrm{a}}
$$

where $J_{m}{ }^{*}=J_{m}+N^{2} J_{L}$ and $B_{m}{ }^{*}=B_{m}+N^{2} B_{L}$, where $N=N / / N_{2}$. Here, J_{m} is the moment of inertia and B_{m} the viscosity coefficient of the motor: likewise, for JLand Bıof the load. where use was made of the relation

$$
\omega_{\mathrm{y}}=N \omega_{\mathrm{m}} .
$$

The tachometer equation

$$
v_{y}=K_{\mathrm{t}} \omega_{\mathrm{y}}
$$

the amplifier equation
$v_{f}=K_{a} v_{e}$

Mathematical Modeling

The mathematical model of the Ward-Leonard layout are as follows .

$$
\begin{aligned}
& \frac{\Omega_{\mathrm{y}}(s)}{V_{\mathrm{f}}(s)}=\frac{K_{\mathrm{g}} K_{\mathrm{m}} N}{\left(L_{\mathrm{f}} s+R_{\mathrm{f}}\right)\left[\left(L_{\mathrm{a}} s+R_{\mathrm{a}}\right)\left(J_{\mathrm{m}}^{*} s+B_{\mathrm{m}}^{*}\right)+K_{\mathrm{m}} K_{\mathrm{b}}\right]} \\
& \frac{\Omega_{y}(s)}{v_{e}(s)}=\frac{K_{\mathrm{a}} K_{\mathrm{g}} K_{\mathrm{m}} N}{\left(L_{\mathrm{f}} s+R_{\mathrm{f}}\right)\left[\left(L_{\mathrm{a}} s+R_{a}\right)\left(J_{\mathrm{m}}^{*} s+B_{\mathrm{m}}^{*}\right)+K_{\mathrm{m}} K_{\mathrm{b}}\right]}
\end{aligned}
$$

Signal Flow

A signal-flow graph is a diagram consisting of nodes that are connected by several directed branches and is a graphical representation of a set of linear relations.
The basic element of a signal-flow graph is a unidirectional path segment called a branch
A loop is a closed path that originates and terminates on
the same node. Two loops are said to be nontouching if they do not have a common node

$$
T_{i j}=\frac{\sum_{k} P_{i j k} \Delta_{i j k}}{\Delta}
$$

$$
P_{i j k}=\text { gain of } k \text { th path from variable } x_{i} \text { to variable } x_{j},
$$

$$
\Delta=\text { determinant of the graph, }
$$

$$
\Delta_{i j k}=\text { cofactor of the path } P_{i j k},
$$

$\begin{aligned} \Delta=1-\sum_{n=1}^{N} L_{n}+\sum_{\substack{n, m}} L_{n} L_{m}-\sum_{\substack{n, m, p, p \\ \text { nontouching }}} L_{n} L_{m} L_{p}+\cdots \Delta=1 & - \text { (sum of all different loop gains) } \\ & + \text { (sum of the gain products of all combinations of two nontouching loops) } \\ & - \text { (sum of the gain products of all combinations of three nontouching loops) } \\ & +\cdots .\end{aligned}$
The cofactor $\Delta_{i j k}$ is the determinant with the loops touching the k th path removed.

Signal Flow

The paths connecting the input $R(s)$ and output $Y(s)$ are

$$
P_{1}=G_{1} G_{2} G_{3} G_{4}(\text { path } 1) \text { and } P_{2}=G_{5} G_{6} G_{7} G_{8}(\text { path } 2)
$$

There are four self-loops:

$$
L_{1}=G_{2} H_{2}, \quad L_{2}=H_{3} G_{3}, \quad L_{3}=G_{6} H_{6}, \quad \text { and } \quad L_{4}=G_{7} H_{7}
$$

Loops L1 and L2 do not touch L3 and L4. Therefore, the determinant is

$$
\Delta=1-\left(L_{1}+L_{2}+L_{3}+L_{4}\right)+\left(L_{1} L_{3}+L_{1} L_{4}+L_{2} L_{3}+L_{2} L_{4}\right)
$$

The cofactor of the determinant along path 1 is evaluated by removing the loops that touch path 1 from $\Delta . \Delta_{1}=1-\left(L_{3}+L_{4}\right)$
Similarly, the cofactor for path 2 is $\Delta_{2}=1-\left(L_{1}+L_{2}\right)$

Therefore, the transfer function of the system is

$$
\frac{Y(s)}{R(s)}=T(s)=\frac{P_{1} \Delta_{1}+P_{2} \Delta_{2}}{\Delta}=\frac{G_{1} G_{2} G_{3} G_{4}\left(1-L_{3}-L_{4}\right)+G_{5} G_{6} G_{7} G_{8}\left(1-L_{1}-L_{2}\right)}{1-L_{1}-L_{2}-L_{3}-L_{4}+L_{1} L_{3}+L_{1} L_{4}+L_{2} L_{3}+L_{2} L_{4} .}
$$

Signal Flow

The armature-controlled DC motor

Signal Flow

The armature-controlled DC motor

Using Mason's signal-flow gain formula, transfer function for $\theta(s) / \operatorname{Va}(s)$ with $\operatorname{Td}(s)=Q_{a(s)}$
The forward path is P1(s), which touches the one loop, $L 1(s)$, where

$$
G_{2}(s)=\frac{1}{J s+b}
$$

$P_{1}(s)=\frac{1}{s} G_{1}(s) G_{2}(s) \quad$ and $\quad L_{1}(s)=-K_{b} G_{1}(s) G_{2}(s)$.
$\Delta=1-\left(L_{1}+L_{2}+L_{3}+L_{4}\right)+\left(L_{1} L_{3}+L_{1} L_{4}+L_{2} L_{3}+L_{2} L_{4}\right)$
$T(s)=\frac{P_{1}(s)}{1-L_{1}(s)}=\frac{(1 / s) G_{1}(s) G_{2}(s)}{1+K_{b} G_{1}(s) G_{2}(s)}=\frac{K_{m}}{s\left[\left(R_{a}+L_{a} s\right)(J s+b)+K_{b} K_{m}\right]}$,

Model Examples

- Pulse Width Modulation (PWM)

